充值活动已开启,快来参与吧 关闭充值活动
当前位置:手动组卷 /高中生物学 /按章节
最新上传 最多使用
  • 1. (2024高一下·杭州期中)  如果用含有14C的CO2来追踪光合作用中碳原子的转移途径,则是(    )
    A . CO2→叶绿素→ADP B . CO2→C5→C3 C . CO2→C3→糖类 D . CO2→C5→C3→糖类
  • 1. (2024高一下·杭州期中)  下列关于光合作用的叙述,正确的是(    )
    A . 光反应在叶绿体基质中进行 B . 光反应为卡尔文循环提供 O2 和 NADPH C . 卡尔文循环只有在黑暗环境中才能进行 D . 卡尔文循环中固定CO 2的物质是一种五碳化合物
  • 1. (2024高三下·贵阳模拟) 光反应是一个复杂的反应过程。从光合色素吸收光能开始,经过水的光解、电子传递,光能经过中间转化最终以化学能的形式储存在ATP和NADPH中。下图表示某绿色植物光反应过程,图中虚线表示电子(e-)的传递,PQ既可以传递电子又可以传递H+。请回答下列问题:

    1. (1) 图中光反应过程发生的场所是;据图分析,光反应过程中具体的能量转化过程为
    2. (2) H+的转运对于光反应中ATP的合成具有重要的作用,图中H+跨膜运输的方式是;以下过程中,能够增大膜内外H+浓度差的有(多选)。

      A水光解产生H+

      BPQ转运H+

      CNADP+与H+结合形成NADPH

      DCF0-CF1转运H+

    3. (3) 光合作用过程中,光反应和暗反应是一个整体,二者紧密联系。光反应为暗反应提供(填物质),暗反应为光反应的进行提供(填物质)。
    4. (4) 为探究鱼藤酮是否能抑制叶绿体中ATP合酶的作用,需要开展对照实验。除控制变量外,还应为离体的叶绿体培养液提供(至少填2个)等条件,以保证光合作用顺利进行。若鱼藤酮能抑制叶绿体中ATP合酶的作用,以C3含量为测量指标时,短时间内,实验结果应是
  • 1. (2024高一下·江门期中) 根据光合作用中CO2的固定方式不同,可将植物分为C3植物和C4植物等类型。在适宜温度、水分和一定的光照强度下,测得两类植物CO2的吸收速率随大气CO2浓度变化的情况,绘制成如图所示的曲线(CO2补偿点时的光合速率与呼吸速率相等)。下列有关叙述正确的是(    )

    A . 在大气CO2浓度达到补偿点后,C3植物和C4植物开始进行光合作用 B . 在大气CO2浓度达到饱和点后,限制C4植物光合速率的主要环境因素是光照强度 C . 图中两条曲线的交叉点代表此时C3植物和C4植物光合作用制造的有机物一样多 D . 干旱会导致气孔开度减小,在同等程度干旱条件下,C3植物比C4植物生长得会更好
  • 1. (2023高一上·成都期中)  下列有关细胞结构的叙述,错误的是(    )
    A . 中心体和核糖体与蛋白质的合成有关 B . 植物细胞中的液泡可调节细胞内的环境 C . 高尔基体主要进行蛋白质的分拣和转运 D . 叶绿体、线粒体与细胞内物质和能量的转化有关
  • 1. (2023高一上·成都期中)  细胞内的“动力车间”和“养料制造车间”分别是(    )
    A . 叶绿体和线粒体 B . 线粒体和叶绿体 C . 叶绿体和内质网 D . 线粒体和液泡
  • 1. (2024高一下·湖北期中) 人参是阴生植物,常生长在以红松为主的针阔混交林中。已知人参和红松光合作用的最适温度为25℃,呼吸作用的最适温度为30℃,在25℃条件下人参和红松光合速率与呼吸速率比值(P/R)随光照强度的变化如图所示。请回答下列问题:

    1. (1) 图中曲线A代表的植物是(填“人参”或“红松”),光照强度为a时,每日光照14小时,人参和红松(填“都能”或“都不能”或“有一种能”)正常生长。若将环境温度提高至30℃,其他条件不变,图中a点将(填“不变”或“左移”或“右移”)。光照强度为a时,植物叶肉细胞能够产生NADH的场所为
    2. (2) 在某一温度条件下,某同学甲在人参一片叶子的某一部位用打孔器取一个面积为1cm2的小圆片,称重为M0,然后在实验温度条件下将该植株置于黑暗环境中6h后,在第一次打孔的附近取一个面积为1cm2的小圆片,称重为M1 , 再将该植株置于相同的温度条件下,在恒定的光照强度下放置6h后,再在第二次打孔的附近取一个面积为1cm2的小圆片,称重为M2 , 则在此温度下,光合作用速率的计算公式为(用)M0、M1 , M2表示)。如何利用甲同学的实验方法探究温度对光合速率的影响,写出简要的实验设计思路(不含预期结果和结论):
  • 1. (2024高三下·河池模拟) 在高光强时,气孔关闭,光反应积累的NADPH和ATP较多,容易导致自由基产生,使叶绿体受损。Rubisco是一种双功能酶,可以催化CO2固定。还可以催化C5和O2反应,消耗ATP和NADPH,同时生成CO2等产物,该反应称之为光呼吸。C.植物是一种高产的植物,因其体内存在一种PEP羧化酶,可以利用低浓度CO2 , 形成CO2泵,具体过程如图所示,据图回答问题:

    1. (1) NADPH在光合作用中的作用是
    2. (2) 在高光强时光反应强烈,而气孔关闭,此时光呼吸会(填“加强”或“减弱”),光呼吸的意义是
    3. (3) 研究发现C4植物高产的原因是光呼吸作用很弱,并且几乎没有光合午休现象。理由是
    4. (4) 卡尔文利用小球藻研究光合作用中碳的同化与去向,用14C的CO2供给小球藻,每隔一定时间取样,浓缩后再点样利用双向纸层析,使化合物,根据标记化合物出现的时间,最先检测到的是三碳化合物,猜测此三碳化合物是CO2与某一个二碳分子结合生成的,但当(填“增加CO2浓度”或“降低CO2浓度”)后,发现RuBP的含量快速增加,由此推知固定CO2的物质不是二碳分子而是RuBP。
  • 1. (2024高三下·安顺模拟) 磷酸丙糖是光合作用的最初产物,可在叶绿体中转化成淀粉,也能通过叶绿体膜上的磷酸转运器运出叶绿体,合成蔗糖。蔗糖合成过程中会释放Pi,Pi进入叶绿体中交换磷酸丙糖到叶绿体外,过程如图1所示。据图回答问题:

    图1

    1. (1) 在叶肉细胞中,磷酸丙糖合成的具体场所是。叶绿体中的Pi能调节磷酸丙糖的运输,也能参与合成与光合作用有关的物质,如
    2. (2) 蔗糖磷脂是一种能结合Pi,使细胞质基质中的Pi减少的物质。研究人员选取生理状态相同的离体叶片和正常叶片(植株上的叶片),培养后检测细胞内蔗糖磷脂酶(能催化蔗糖磷脂分解)的活性和淀粉的含量,其结果如图2所示。离体叶片中的蔗糖无法输出,会大量积累。积累的蔗糖会(填“促进”或“抑制”)蔗糖的合成,结合实验结果分析,原因是。离体叶片积累的淀粉较多,原因是

      图2

    3. (3) 灌浆期是小麦积累光合产物的重要阶段,蔗糖积累多更有利于高产。淀粉不易运出叶绿体,原因是。结合以上信息,提出1条在灌浆期利于小麦增产的生产措施:
  • 1. (2024高三下·广西壮族自治区模拟)  光合作用是农作物产量的基础,农作物所处的光环境瞬息万变。提高光合作用的启动速率能够使农作物更好地适应周围光环境的变化。科学家以番茄为材料,对光合作用的启动进行了相关研究。

    1. (1) 番茄叶肉细胞内位于的色素吸收光能后,光能最终转化为有机物中的储存。
    2. (2) 研究人员将图甲所示番茄幼苗置于黑暗环境中,分别只给予顶部叶、上部叶、下部叶白光照射30分钟(植株其他部分处于黑暗中),然后给予各组目标叶相同的光照等条件,用光合仪测定目标叶的光合速率,结果如图乙。结果表明:光作为信号分子通过调节顶部叶代谢(填“加快”或“减慢”)目标叶光合作用的启动速率。

    3. (3) 有研究表明红光促进目标叶光合作用的启动,远红光抑制启动。请基于(2)的研究和材料用具,写出实验思路
    4. (4) 光敏色素包括光敏色素A(phyA)和光敏色素B(phyB),它们在分生组织中含量丰富,主要吸收红光和远红光。研究人员推测目标叶光合作用启动速率的提高依赖phyB.为验证推测,科研人员以嫁接番茄光敏色素缺失突变体为实验材料,对各组实验给予红光照射,实验记录表格如下。请在表中填写上述推测成立时的预期实验结果(用“短于T”“长于T”或“与T接近”表示)。

      接穗

      野生型

      phyA突变体

      phyB突变体

      砧木

      野生型

      野生型

      野生型

      目标叶光合速率达到最大光合速率90%时所用时间(min)

      T

1 2 3 4 5 下一页 共1000页