当前位置: 最新试题
  • 1. (2020·呼和浩特模拟) 某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:

    分组

    划记

    频数

    2.0<x≤3.5

    正正一

     11

     3.5<x≤5.0

    图片_x0020_1317626053

     19

     5.0<x≤6.5

     6.5<x≤8.0

     8.0<x≤9.5

    图片_x0020_1927087654

     2

     合计

     50

    图片_x0020_471679790

    1. (1) 把上面的频数分布表和频数分布直方图补充完整;
    2. (2) 请你用频数分布直方图计算这50个家庭去年的月均用水量的平均数和中位数(各组的实际数据用该组的组中值表示);若该小区有2000个家庭,请你用频数分布直方图得到的数据估计该小区月均用水总量;
    3. (3) 为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量标准应该定为多少?为什么?
  • 2. (2020·呼和浩特模拟) 2019年第一季度,我国国民经济开局平稳,积极因素逐渐增多社会消费品零售总额约为97790亿元,同比增长8.3%;网上零售额为22379亿元,同比增长15.3%其中22379亿用科学记数法表示为________
  • 3. (2020·呼和浩特模拟) 已知关于x的不等式 > x-1,当m=1时,该不等式的解集为________;若该不等式的解集中的每一个x都能使关于x的不等式x>a成立,则此时m的取值范围为________,a的取值范围是________
  • 4. (2020·呼和浩特模拟) 如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),点I是△ABC的内心,则点I的坐标为________;点I关于原点对称的点的坐标为________

    图片_x0020_100012

  • 5. (2020·呼和浩特模拟) 在平面直角坐标系xOy中,抛物线y=-x2+6x-8与x轴交于点AB(点A在点B的左侧),与y轴交于点C . 垂直于y轴的直线l与抛物线交于点Px1y1),Qx2y2),与直线BC交于点Nx3y3),若x1<x2<x3 , 记s=x1+x2+x3 , 则s的取值范围为________.
  • 6. (2020·呼和浩特模拟)             
    1. (1) 计算:2 ·sin60°-|7-5 |+2÷ -1
    2. (2) 解方程: - =-2
  • 7. (2020·呼和浩特模拟) 某几何体的三视图如图所示;则该几何体的表面积为(  )

    图片_x0020_100007

    A . 6 +6+2 B . 18+2 C . 3 D . 6
  • 8. (2020·呼和浩特模拟) 给出以下四个命题:

    ①以现价销售一件商品的利润率为30%,如果商家在现在价格的基础上先提价40%,后降价50%进行销售,商家还能有利润;

    ②数据x1x2x3x4的方差是3,则数据x1+1,x2+1,x3+1,x4+1的方差还是3;

    ③若圆锥的侧面展开图是一个半圆,则母线AB与高AO的夹角为30°;

    ④已知关于a的一次函数y=2ax2+2x-3(x≠0)在-1≤a≤1上函数值恒小于零,则实数x的取值范围为- - <x<0或0<x<- +

    其中正确命题的个数为(  )

    A . 1个 B . 2个 C . 3个 D . 4个
  • 9. (2020·呼和浩特模拟) 小王第一天做了x个零件,第二天比第一天多做5个,第三天做的零件是第二天的2倍,若三天共做零件75个,则第一天做了(  )
    A . 15个 B . 14个 C . 10个 D . 20个
  • 10. (2020·呼和浩特模拟) 我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6 , 则S6的值为(  )
    A . B . 2 C . D .
1 2 3 4 5 下一页 共1000页