充值活动已开启,快来参与吧 关闭充值活动
当前位置:手动组卷 /高中物理 /按章节
最新上传 最多使用
  • 1. (2024高三下·罗平模拟)  如图所示,不可伸长的轻质细线跨过轻质滑轮连接两个质量分别为的物体A、B,质量为的物体C中间有孔,套在细线上且可沿细线无摩擦滑动。初始时使三个物体均处于静止状态,此时A、B离地面的高度均为。物体C在B上方处。同时由静止释放三个物体,一段时间后,C与B发生碰撞并立即粘在一起。已知重力加速度大小为 , 整个过程中细线未断裂,物体均可视为质点,不计阻力的影响。下列说法正确的是(  )

    A . 从释放三个物体到C与B发生碰撞经历的时间为 B . 碰撞结束后A的速度为零 C . A最终离地面的高度为 D . 碰撞过程中,三个物体损失的机械能为
  • 1. (2024·黔西模拟)  如图所示,光滑水平面上有一根轻质弹簧,弹簧两端分别连接在固定挡板和小物块N上,处于静止状态。一足够长且倾角为θ的光滑斜面体固定在地面上,斜面与地面平滑连接。小物块M与斜面底端的距离为L,小物块M由静止开始释放,在水平地面上与N发生碰撞(碰撞时间极短),并立即粘到一起向左压缩弹簧。已知小物块M、N的质量均为m,重力加速度为g,弹簧始终在弹性限度内。则下列说法正确的是(  )

    A . 小物块M与小物块N碰撞前的动能为mgL B . 小物块M与小物块N碰撞后瞬间的速度为 C . 弹簧的最大弹性势能为mgLsinθ D . 弹簧被压缩到最短时,弹簧的弹性势能最大
  • 1. (2024·黔西模拟)  如图所示,O、M、N为同一竖直平面内的三个点,OP是水平线,ON沿竖直方向, , OM=d。将质量为m的小球以一定的初动能自O点水平向左抛出,小球在运动过程中恰好通过M点。使此小球带电,电荷量为q(q>0),同时加一匀强电场,场强方向与△OMN所在平面平行。现从O点以同样的初动能沿某一方向抛出此带电小球,该小球通过了M点,到达M点时的动能是初动能的3倍。若将该小球从O点以同样的初动能沿另一方向抛出,恰好通过N点,且到达N点时的动能为初动能的6倍,重力加速度大小为g。求:

    1. (1) 无电场时小球的初动能;
    2. (2) 有电场时M、N两点间的电势差。
  • 1. (2024高三下·长沙)  某缓冲装置的理想模型如图所示,劲度系数足够大的轻质弹簧与轻杆相连,轻杆足够长,轻杆可在固定的槽内移动,与槽间的滑动摩擦力与插入的距离d成正比()。固定的槽足够长,装置可安全工作。若一小车分别以初动能Ek1Ek2撞击弹簧,导致轻杆分别向右移动L和3L。已知轻杆初始时位于槽间的长度为L , 装置安全工作时,轻杆与槽间的最大静摩擦力等于滑动摩擦力,且不计小车与地面间的摩擦。比较小车这两次撞击缓冲过程,下列说法正确的是(弹簧的弹性势能)(  )

    A . 小车撞击弹簧的初动能之比大于1:4 B . 系统损失的机械能之比为1:4 C . 两次小车反弹离开弹簧的速度之比为1:2 D . 小车做加速度增大的减速运动
  • 1. (2024·湖南模拟)

    如图所示,有一磁感应强度大小为B的水平匀强磁场,其上下水平边界的间距为H;磁场的正上方有一长方形导线框,其长和宽分别为L、d(d<H),质量为m,电阻为R.现将线框从其下边缘与磁场上边界间的距离为h处由静止释放,测得线框进入磁场的过程所用的时间为t.线框平面始终与磁场方向垂直,线框上下边始终保持水平,重力加速度为g.求:

    1. (1) 线框下边缘刚进入磁场时线框中感应电流的大小和方向;

    2. (2) 线框的上边缘刚进磁场时线框的速率v1

    3. (3) 线框下边缘刚进入磁场到下边缘刚离开磁场的全过程中产生的总焦耳热Q.

  • 1. (2024·湖北模拟)  如图,质量的木板静止在光滑水平地面上右侧的竖直墙面固定一劲度系数为k=20N/m的轻弹簧,弹簧处于自然状态。 质量m=2kg的小物块以水平向右的速度v0=5m/s滑上木板左端,两者共速时木板恰好与弹簧接触。 已知木板足够长,物块与木板间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,弹簧始终处在弹性限度内,取重力加速度g=10m/s,结果可用根式表示。

    1. (1) 求木板刚接触弹簧时速度的大小v1
    2. (2) 求木板与弹簧接触以后,小物块与木板即将相对滑动时弹簧弹力的大小F
    3. (3) 弹簧的弹性势能EP与形变量x的关系为 , 已知木板从与小物块即将发生相对滑动至向右减速为0所用时间为t0秒,求此过程中弹簧对木板冲量的大小I
  • 1. (2024高三下·黄石模拟)  如图,圆心角为 , 质量为2m的弧形物块A与质量为m的弧形物块B叠放在一起,并将A、B粘连,构成一个半径的四分之一光滑圆弧轨道,静止在光滑的水平面上。质量为m的滑块C,以速度水平向右冲上轨道。取重力加速度

    1. (1) 要使物块不会从最高点冲出轨道,求应该满足的条件;
    2. (2) 若 , 求滑块能上升的最大高度;
    3. (3) 若将物块B撤去,滑块C以的速度冲上A,求滑块C滑至A的最高点时物块A的速度大小。
  • 1. (2024·绵阳模拟) 如图甲所示的等双翼式传输机,其两侧等长的传送带倾角可以在一定范围内调节,方便不同工况下的货物传送作业,工作时两传送带匀速转动且速度相同。图乙为等双翼式传输机工作示意图,代表两传送带。第一次调整倾角为倾角为;第二次调整倾角为倾角为 , 两次分别将同一货物无初速放在的最低端,都能传到的最高端。货物与的接触面粗糙程度相同,两次运输中货物均在上就已与传送带达共速,先后两次传输机运行速度相同,则( )

    A . 两次运送货物经过的时间相等
    B . 第一次运送货物的时间较短
    C . 传输机因运送物件而多消耗的能量,两次相等
    D . 传输机因运送物件而多消耗的能量,第二次较多
  • 1. (2024高二下·舟山月考)  类比是研究和解决物理问题的常用方法。如图1,对于劲度系数为k的轻质弹簧和质量为m小球组成一维振动系统,我们可以写出任意时刻振子的能量方程为 , 其中x为任意时刻小球偏离平衡位置的位移,v为瞬时速度,v和x满足关系。振子简谐运动的周期与振子质量的平方根成正比,与振动系统的振动系数的平方根成反比,而与振幅无关,即

    1. (1) 如图2,摆长为L、摆球质量为m的单摆在A、B间做小角度的自由摆动。请你类比弹簧振动系统从能量守恒的角度类推出单摆的周期公式(已知重力加速度g;取最低点为零势能面;θ很小时,有 , 弧长)。
    2. (2) 如图3电路,电容器充满电后,将开关置于线圈一侧时,由电感线圈L和电容C组成的电路称为LC振荡电路,是最简单的振荡电路。理论分析表明,LC振荡电路的周期与电感L、电容C存在一定关系。已知电感线圈的磁场能可表示为 , 电容器储存的能量可表示为QU。请类比简谐运动,根据上述信息,通过对比状态描述参量,分析推导LC振荡电路(不计能量损失)的周期表达式,并定性画出振荡电路电流i随时间t的变化图像(时,电容器开始放电,以顺时针为电流的正方向)。
  • 1. (2024高二下·舟山月考)  “东方绿舟”内有一个绿色能源区,同学们可以在这里做太阳能和风能的研究性实验,某同学为了测定夏季中午单位面积上、单位时间内获得的太阳能,制作了一个太阳能集热装置,实验器材有:①内壁涂黑的泡沫塑料箱一个,底面积为1平方米;②盛水塑料袋一个;③温度计一个;③玻璃板一块(约1平方米),如图所示:

    假设图为一斜坡草地,太阳光垂直照射到草地表面,请将上述实验器材按实验设计要求画在图中

    如果已知水的比热容c,被水吸收的热量Q与水的质量m、水温升高量△间的关系是 , 则为了测定中午单位面积上、单位时间内获得的太阳能,除了需要测量m、外,还应测量的物理量是,本实验会有一定误差,试写出一条产生误差的主要原因:

1 2 3 4 5 下一页 共293页