充值活动已开启,快来参与吧 关闭充值活动
当前位置:手动组卷 /高中物理 /按知识点
选择知识点
最新上传 最多使用
  • 1. (2024高三下·雅安模拟)  水平地面上放置有如图所示的装置,光滑竖直杆上、下端分别固定有挡板和底座,且套有可上下移动圆盘。一轻质弹簧下端固定在底座上,上端位于A处。推动圆盘将弹簧压缩至处后由静止释放,圆盘运动到处与挡板发生完全非弹性碰撞(作用时间极短),带动竖直杆和底座一起向上运动,上升时速度减为零。已知圆盘质量 , 竖直杆、挡板和底座总质量A间距离A间距离 , 重力加速度取10m/s2 , 不计空气阻力和圆盘厚度。求:

    1. (1) 圆盘与挡板碰撞前瞬间的速度大小
    2. (2) 释放圆盘瞬间弹簧中储存的弹性势能
  • 1. (2024高三下·成都模拟) 如图(a),一质量为m的物块A与轻质弹簧连接,静止在光滑水平面上:物块B向A运动, 时与弹簧接触,到 时与弹簧分离,第一次碰撞结束,A、B的 图像如图(b)所示。已知从 时间内,物块A运动的距离为 。A、B分离后,A滑上粗糙斜面,然后滑下,与一直在水平面上运动的B再次碰撞,之后A再次滑上斜面,达到的最高点与前一次相同。斜面倾角为 ,与水平面光滑连接。碰撞过程中弹簧始终处于弹性限度内。求

    1. (1) 第一次碰撞过程中,弹簧弹性势能的最大值;
    2. (2) 第一次碰撞过程中,弹簧压缩量的最大值;
    3. (3) 物块A与斜面间的动摩擦因数。
  • 1. (2024高三下·成都模拟)  光滑的水平面上停放着质量mC=2kg的平板小车C,C的左端放置质量mA=1kg的物块A,车上距左端x0处(x0小于车的长度)放置质量mB=3kg的物块B,物块A、B均可视为质点,它们与车面间的动摩擦因数分别为μA=0.3、μB=0.1,开始时车被锁定无法运动,物块A以v0=9m/s的水平初速度从左端开始正对B运动,重力加速度g=10 m/s2

    1. (1) 若x0=7.5 m,求A开始运动后经过多长时间与B发生碰撞;
    2. (2) 若x0=7.5 m,A与B发生弹性正碰,求A停止运动时距车左端的距离;
    3. (3) 改变x0的值,A运动至B处与B发生弹性碰撞后立即解除对车的锁定,此后A与B都刚好没从车上掉下,求平板车的长度。
  • 1. (2024高三下·湖南模拟)  如图甲所示,光滑的水平地面上静置一质量为M , 半径为R光滑的圆弧体,圆心为O , 一个质量为m的小球由静止释放,释放时小球和O点连线与竖直半径OA夹角为 , 滑至圆弧底部后与圆弧分离,此时小球相对地面的水平位移为x。改变小球释放时的角度 , 得到小球的水平位移x的关系图像如图乙所示,重力加速度为g , 关于小球下滑的过程,下列说法正确的是(  )

    A . 小球与圆弧面组成的系统动量守恒 B . 圆弧体对小球做负功 C . 圆弧体与小球的质量之比为 D . 为90°时,两者分离时小球的速度为
  • 1. (2024高三下·湖北模拟)  皮带式传送带是物料搬运系统机械化和自动化不可缺少的组成部分。为研究物块在传送带上的运动,建立如图所示的物理模型。竖直平面内有一倾斜的光滑直轨道AB , 其下方右侧放置一水平传送带,以恒定速度v0=4m/s逆时针转动,转轮半径  , 转轮最高点离地面的高度 直轨道末端B与传送带左端平滑相切。现将一质量 的小物块放在距离传送带高h=3.2m处静止释放,小物块从B端运动到传送带左端时,速度大小不变,方向变为水平向右,结果小物块恰好从传送带右端最高点C点水平飞出,已知小物块与传送带间的动摩擦因数μ=0.5, g取 

    1. (1) 求传送带两转轴间距L
    2. (2) 若其他条件不变,传送带改为顺时针转动,小物块从传送带右端C点飞出后受到的空气阻力始终与速度成正比,比例系数。 方向始终与运动方向相反,经时间 最终落到水平地面上的D点, 测得CD水平间距0.8m。求∶

      ①小物块从传送带C点飞出的速度大小;

      ②小物块落到水平地面上D点的速度大小;

      ③小物块飞出后克服空气阻力做的功。

  • 1. (2024高三下·湖北模拟)  如图甲所示,两个半径为R的竖直固定的绝缘光滑 细圆管道与粗糙水平地面ABB点平滑相切,过管道圆心 的水平界面下方空间有水平向右的电场,记A点所在位置为坐标原点,沿AB方向建立坐标轴,电场强度大小随位置变化如图乙所示。质量为、带电量为的小球P静止在A点,与地面间动摩擦因数。另有一光滑绝缘不带电小球Q,质量为 , 以速度向右运动,与小球P发生弹性正碰,碰撞时间极短,且P、Q间无电荷转移,碰后P球可从B点无碰撞进入管道。已知AB间距离为4R重力加速度为 , 不计空气阻力,小球P、Q均可视为质点。求:

    1. (1) 碰后小球P的速度大小
    2. (2) 小球P从A点运动到管道最高点C点过程中电场力做的功
    3. (3) 小球P再次到达水平地面时与B点的距离。
  • 1. (2024高三下·长沙模拟) 如图所示,倾角为θ的固定斜面的底端安装一个弹性挡板P,质量分别为m和4m的物块a、b置于斜面上,二者初始位置距离挡板足够远,物块a与斜面间无摩擦,物块b与斜面间的动摩擦因数为。两物块间夹有一个劲度系数很大且处于压缩状态的轻质极短弹簧,弹簧被锁定,锁定时弹簧的弹性势能为。现给两物块一大小为、方向沿斜面向下的初速度的同时,解除弹簧锁定,弹簧迅速完全释放弹性势能,并立即拿走弹簧。物块a、b与挡板P之间的碰撞均为弹性碰撞,重力加速度为g(弹簧长度可以忽略不计)。求:

    1. (1) 弹簧解除锁定后a、b的速度大小;
    2. (2) 拿走弹簧后,a与b第一次碰撞后b上升的高度;
    3. (3) b被第一次碰撞后到最终能沿斜面向上运动的最大距离。
  • 1. (2024高三下·长沙模拟) 如图所示,导轨MN、PQ足够长,与水平面夹角为θ , 两导轨上端接有电阻和电容器,RC分别表示电阻的大小和电容的大小,P处连有一单刀双掷开关S,两导轨平行且相距为L , 整个装置处在垂直于该平面向下的匀强磁场中,磁感应强度大小为B , 质量为m、长为L的导体棒ab在外力作用下垂直静置于导轨上(导体棒电阻不计),ab与导轨间的动摩擦因数为 , 重力加速度为g , ab与导轨间接触始终良好。

    1. (1) 将单刀双掷开关S置于1,ab从静止释放(撤去外力),经时间t刚好达到最大速度,求这个过程中R产生的焦耳热;
    2. (2) 将单刀双掷开关S置于2,ab从静止释放(撤去外力),试判断ab的加速度是否恒定,请详细说明推理过程;
    3. (3) 将单刀双掷开关S置于2,ab从静止释放(撤去外力),ab沿导轨下滑距离为s时,求电容器所带电荷量。
  • 1. (2024高三下·长沙模拟) 如图甲所示,在绝缘水平桌面上固定有间距为m的光滑平行金属导轨,虚线MN左侧、PQ右侧(不包含边界)存在相同的匀强磁场,磁场方向竖直向下,磁感应强度B=4T,两个阻值均为2Ω的电阻接在导轨的左右两端。导轨上放置两个完全相同的导体棒abcd , 导体棒的质量m=0.5kg,长度m,电阻Ω,ab位于MN左侧,cd放在磁场边界PQ上,对ab施加向右的恒力=5N后,ab的速度-时间图像如图乙所示(~段为直线,其余段为曲线),时刻撤去外力F,时刻ab静止,已知时刻的速度大小为4m/s,~过程图像围成的面积为2m。两个导体棒之间的碰撞为完全非弹性碰撞,导体棒与导轨始终接触良好,不计导轨电阻,求:

    1. (1) 两磁场边界MN、PQ之间的距离L;
    2. (2) 若时刻之后系统受到向左的变力作用,且 , 国际单位制下比例系数k大小为8.0,已知施加后的0.5s内,导体棒运动位移为x=1.15m,此过程中导轨左侧接入的电阻R产生的焦耳热为Q=1.5J,求施加后的0.5s内做的功。
  • 1. (2024高三下·长沙模拟) 北京成为世界上第一个既举办过夏季奥运会,又举办冬季奥运会的城市。如图(a)为某滑雪跳台的一种场地简化模型,右侧是一固定的四分之一光滑圆弧轨道AB,半径为R=1.8m,左侧是一固定的光滑曲面轨道CD,两轨道末端C与B等高,两轨道间有质量M=4kg的薄木板静止在光滑水平地面上,右端紧靠圆弧轨道AB的B端。薄木板上表面与圆弧面相切于B点。一质量m=2kg的小滑块Р(视为质点)从圆弧轨道B最高点由静止滑下,经B点后滑上薄木板,重力加速度大小为g=10m/s2,滑块与薄木板之间的动摩擦因数为=0.4。

    1. (1) 求小滑块Р滑到B点时对轨道的压力大小;
    2. (2) 若木板只与C端发生1次碰撞,薄木板与轨道碰撞为弹性碰撞且碰撞时间极短,运动过程滑块所受摩擦力不变,滑块未与木板分离,求薄木板的运动时间t和最小长度L;
    3. (3) 如图(b)撤去木板,将两轨道C端和B端平滑对接后固定.忽略轨道上B、C

      距地的高度,D点与地面高度差h=1.2m,小滑块Р仍从圆弧轨道AB最高点由静止滑下,滑块从D点飞出时速率为多少?从D点飞出时速度与水平方向夹角0可调,要使得滑块从D点飞出后落到地面水平射程最大,求最大水平射程Sm及对应的夹角θ。

1 2 3 4 5 下一页 共877页