当前位置: 答案解析 > 图形的变换 > 锐角三角函数 > 解直角三角形的应用
  • 1. 图1是一辆在平地上滑行的滑板车,图2是其示意图,已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位:参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)


举一反三换一批
  • 1.

    如图,为测量旗杆AB的高度,在与B距离为8米的C处测得旗杆顶端A的仰角为56°,那么旗杆的高度约是{#blank#}1{#/blank#}米(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)


  • 2. 如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为(  )


    A . B . C . D .
  • 3. 如图所示,某公路检测中心在一事故多发地带安装了一个测速仪,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用的时间为0.9秒.已知∠B=30°,∠C=45°

    1. (1)求B,C之间的距离;(保留根号)
    2. (2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据: ,
  • 4. 如图,在水平地面上竖立着一面墙AB,墙外有一盏路灯D.光线DC恰好通过墙的最高点B,且与地面形成37°角.墙在灯光下的影子为线段AC,并测得AC=5.5米.

    1. (1)

      求墙AB的高度(结果精确到0.1米);(参考数据:tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)

    2. (2)

      如果要缩短影子AC的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法

  • 5. 如图,升降平台由三个边长为1.2米的菱形和两个腰长为1.2米的等腰三角形组成,其中平台AM与底座A0N平行,长度均为2.4米,B,B0分别在AM和A0N上滑动,且始终保持点B0 , C1 , A1成一直线.

    1. (1)这种升降平台的设计原理是利用了四边形的{#blank#}1{#/blank#}性;
    2. (2)为了安全,该平台在作业时∠B1不得超过40°,求平台高度(AA0)的最大值.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,结果保留小数点后一位).